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Abstract
In this paper, applying the theory of commutative algebra, we propose a new
approach which we currently call the first-integral method to study the Burgers–
Korteweg–de Vries equation.
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1. Introduction

During the past three decades, the Burgers equation, Korteweg–de Vries (KdV) equation and
Burgers–Korteweg–de Vries equation (Burgers–KdV) have attracted a lot of attention from a
rather diverse group of scientists such as physicists and mathematicians, because these three
equations not only arise from realistic physical phenomena, but can also be widely applied
to many physically significant fields such as plasma physics, fluid dynamics, crystal lattice
theory, nonlinear circuit theory and astrophysics [1–10].

Consider the Burgers–KdV equation

ut + αuux + βuxx + suxxx = 0 (1)

where α, β and s are real constants with αβs �= 0. Equation (1) is applied as a nonlinear model
of the propagation of waves on an elastic tube filled with a viscous fluid [7], the flow of liquids
containing gas bubbles [8] and turbulence [9, 10]. It can also be regarded as a combination
of the Burgers’ equation and KdV equation, since the choices α �= 0, β �= 0 and s = 0 lead
equation (1) to the Burgers’ equation

ut + αuux + βuxx = 0 (2)

and the choices α �= 0, β = 0 and s �= 0 lead equation (1) to the KdV equation

ut + αuux + suxxx = 0. (3)
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It is well known that both (2) and (3) are exactly solvable, and have the travelling wave
solutions as follows:

u(x, t) = 2k

α
+

2βk

α
tanh k(x − 2kt)

and

u(x, t) = 12sk2

α
sech2k(x − 4sk2t).

A great number of theoretical issues concerning the Burgers–KdV equation have received
considerable attention. In particular, the travelling wave solution to the Burgers–KdV equation
has been studied extensively. Johnson examined the travelling wave solutions to the Burgers–
KdV equation in the phase plan by means of a perturbation method in the regimes where
β � s and s � β, and developed formal asymptotic expansions for the solution [7]. Grua
and Hu used a steady-state version of (1) to describe a weak shock profile in plasmas [11].
They studied the same problem using a similar method to that used by Johnson [7], and a
related problem was studied by Jeffrey [12]. The numerical investigation of the problem was
carried out by Canosa and Gazdag et al [13–15]. Bona and Schonbek studied the existence and
uniqueness of bounded travelling wave solutions to (1) which tend to constant states at plus and
minus infinity [16]. They also considered the limiting behaviour of the travelling wave solution
of (1) as β → 0 with s of order 1, and also as s → 0 with β of order 1. The case where both β
and s → 0 with β/s held fixed was also examined. The asymptotic and global behaviour of the
travelling wave solution to (1) as s> 0 was undertaken by Guan and Gao, and the applications
of the theory to diversified turbulent flow problems were described in detail in [9, 17]. On
using variable transformation and the theory of ordinary differential equation, the asymptotic
behaviour and the proper analytical solution to (1) were presented by Shu [18]. Gibbon
et al showed that equation (1) does not have the Painlevé property [19]. Qualitative results
concerning the travelling wave solutions to the Burgers–KdV equation were also obtained by
the above mentioned authors and others, but they did not find the exact functional form of the
travelling wave solution, or any other exact solutions.

Since the late 1980s, many mathematicians and physicists have obtained explicit exact
solutions to the Burgers–KdV equation by various methods. Among them are Xiong, who
obtained an exact solution to (1) when α = 1, β = −c and s = β by the analytic method [20],
Liu et al who obtained the same solution by the method of undetermined coefficients [21],
Jeffrey et al, who obtained an exact solution to (1) by a direct method and a series method
[22, 23], Halford and Vlieg-Hulstman, who obtained the same result in [24] by partial use of
a Painlevé analysis, Wang, who applied the homogeneous balance method to obtain an exact
solution [25], which was verified by Parkes by the tanh-function method [26]. However, apart
from several minor errors in [25] and [26], the solutions obtained in the previous literature are
actually equivalent to one another. That is, the travelling solitary wave solution to (1) can be
expressed as a composition of a bell solitary wave and a kink solitary wave.

The purpose of this paper is to propose a new approach to the Burgers–KdV equation by
using the theory of commutative algebra, which is currently called the first-integral method.
The results obtained by this technique coincide with those presented in the previous literature.

2. Exact solutions to the Burgers–KdV equation

Assume that equation (1) has travelling wave solutions in the form u(x, t) = u(ξ), ξ =
x − vt, (v ∈ R). Substituting it into equation (1) and integrating once we have

u′′(ξ)− ru′(ξ)− au2(ξ)− bu(ξ)− d = 0 (4)
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where r = − β

s
, a = − α

2s , b = v
s

and d is an arbitrary integration constant. Equation (4)
is a nonlinear ordinary differential equation. It is commonly believed that it is very difficult
for us to find exact solutions to equation (4) by usual ways [17]. Let x = u, y = uξ , then
equation (4) is equivalent to{

ẋ = y

ẏ = ry + ax2 + bx + d.
(5)

By the qualitative theory of ordinary differential equations [27], if we can find two
first-integrals to (5) under the same conditions, then the general solutions to (5) can be
expressed explicitly. However, in general, it is really difficult for us to realize this, even for one
first-integral, because for a given plane autonomous system, there is no systematic theory that
can tell us how to find its first-integrals, nor is there a logical way to tell us what these
first-integrals are.

In this section, we are applying the first-integral method to study (1). That is, we will
apply the Hilbert–Nullstellensatz theorem to obtain one first-integral to (5) which reduces
equation (4) to a first-order integrable ordinary differential equation. An exact solution to (1)
is then obtained by solving this equation. At the end of this section, the solutions obtained in
the previous literature are compared with ours.

For convenience, first let us recall the Hilbert–Nullstellensatz theorem [28].

Hilbert–Nullstellensatz theorem

Let k be a field and L an algebraic closure of k.

(i) Every ideal γ of k[X1, . . . , Xn] not containing 1 admits at least one zero in Ln.
(ii) Let x = (x1, . . . , xn),y = (y1, . . . , yn) be two elements of Ln; for the set of polynomials

of k[X1 , . . . , Xn] zero at x to be identical with the set of polynomials of k[X1, . . . , Xn]
zero at y, it is necessary and sufficient that there exists a k-automorphism s of L such that
yi = s(xi) for 1 � i � n.

(iii) For an ideal α of k[X1, . . . , Xn] to be maximal, it is necessary and sufficient that there
exists an x in Ln such that α is the set of polynomials of k[X1, . . . , Xn] zero at x.

(iv) For a polynomial Q of k[X1, . . . , Xn] to be zero on the set of zeros in Ln of an ideal γ of
k[X1, . . . , Xn], it is necessary and sufficient that there exists an integer m > 0 such that
Qm ∈ γ .

Following immediately from the Hilbert–Nullstellensatz theorem, we obtain the division
theorem for two variables in the complex domain C:

Division theorem

Suppose that P(ω, z) and Q(ω, z) are polynomials in C[ω, z], and P(ω, z) is irreducible in
C[ω, z]. If Q(ω, z) vanishes at all zero points of P(ω, z), then there exists a polynomial
G(ω, z) in C[ω, z] such that

Q(ω, z) = P(ω, z) ·G(ω, z).
Now, we apply the division theorem to seek the first-integral to (5). Suppose that x = x(ξ)

and y = y (ξ ) are the nontrivial solutions to (5), and p(x, y) = ∑m
i=0 ai(x)y

i is an irreducible
polynomial in C[x, y] such that

p[x(ξ), y(ξ)] =
m∑
i=0

ai(x)y
i = 0 (6)
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where ai(x) (i = 0, 1, . . . ,m) are polynomials of x and all relatively prime in C[x, y], and
am(x) �≡ 0. Equation (6) is also called the first-integral to (5). We start our study by assuming
m = 2 in (6). Note that dp

dξ is a polynomial in x and y, andp[x(ξ), y(ξ)] = 0 implies dp
dξ

∣∣
(5) = 0.

By the division theorem, there exists a polynomial H(x, y) = α(x) + β(x)y in C[x, y] such
that

dp

dξ

∣∣∣∣
(5)

=
(
∂p

∂x

∂x

∂ξ
+
∂p

∂y

∂y

∂ξ

)∣∣∣∣
(5)

=
2∑
i=0

[
a′
i(x)y

i · y] +
2∑
i=0

[
iai(x)y

i−1(ry + ax2 + bx + d)
]

= [α(x) + β(x)y]

[
2∑
i=0

ai(x)y
i

]
. (7)

On equating the coefficients of yi (i = 3, 2, 1, 0) on both sides of (7), we have

a′(x) = A(x) · a(x) (8)

and

[0, ax2 + bx + d,−α(x)] · a(x) = 0 (9)

where a(x) = (a2(x), a1(x), a0(x))
t , and

A(x) =

 β(x) 0 0

α(x)− 2r β(x) 0
−2(ax2 + bx + d) α(x)− r β(x)


 .

Since ai(x) (i = 0, 1, 2) are polynomials, from (8), we deduce that a2(x) is a constant
and β(x) = 0. For simplification, taking a2(x) = 1 and solving (8), we have

a(x) =

 1∫

[α(x)− 2r] dx∫
[a1(x)α(x)− ra1(x)− 2(ax2 + bx + d)] dx


 . (10)

By (9) and (10), we conclude that degα(x) = 0, i.e., dega1(x) = 1. Otherwise, if
degα(x) = k > 0, then we deduce deg a1(x) = k + 1 and deg a0(x) = 2k + 2 from (10). This
yields a contradiction with (9), since the degree of the polynomial a1(x) · (ax2 + bx + d) is
k + 3, but the degree of the polynomial a0(x) · α(x) is 3k + 2.

Assume that a1(x) = A1x + A0, A1, A0 ∈ C with A1 �= 0. By (10), we deduce that
A1 = α(x)−2r and a0(x) = − 2ax3

3 −bx2 + A1(A1 + r)
2 x2 −2dx +A0(A1 + r)x +D, here D is an

arbitrary integration constant. Substituting a1(x) and a0(x) into (9) and setting all coefficients
of xi (i = 3, 2, 1, 0) to zero we set



A1a = (− 2a
3

) · (A1 + 2r)

A0a +A1b =
[
A1(A1 + r)

2 − b
]

· (A1 + 2r)

A1d + A0b = [(A1 + r)A0 − 2d] · (A1 + 2r)
A0d = D · (A1 + 2r).

(11)

Taking the integration constant d = 0, we have

A1 = −4r

5
A0 = − 12r3

125a
− 2br

5a
D = 0. (12)

By the third equation of (11), we obtain

b = 6r2

25
or b = −6r2

25
. (13)
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In the case b = 6r2

25 , A0 in (12) can be simplified as A0 = − 4br
5a . Substituting a0(x) and a1(x)

into (6) we set

y2 −
(

4r

5
x +

4br

5a

)
y − 2a

3
x3 − bx2 − 2r2

25
x2 − 4br2

25a
x = 0. (14)

From (14), y can be expressed in terms of x, i.e.

y = 2r

5
x +

2br

5a
±

√
2a

3
x3 + 2bx2 +

2b2

a
x +

2b3

3a2
= 2r

5
x +

2br

5a
±

√
2

3a2
(ax + b)3. (15)

Combining (5) and (15), we have
dx

2r
5 x + 2br

5a ± (ax + b)
√

2
3a2 (ax + b)

= dξ. (16)

By a transformation z =
√

2
3a2 (ax + b), an exact solution to (1) can be obtained as follows

by solving (16) directly

u(x, t) = 3a

2

[
± 2r

5a e
r
5 ξ

e
r
5 ξ + c

]2

− b

a
= −12β2

25αs

[
e− β

5s ξ

e− β

5s ξ + c

]2

+
2v

α
(17)

where ξ = x − vt and c is an arbitrary integration constant.
Since b = v

s
and r = − β

s
, b = 6r2

25 in (13) implies v = 6β2

25s . By using the equality

4A
[

e2t

1 + e2t

]2 = −A sech2t + 2A tanh t + 2A and setting c = 1 in (17), the explicit travelling
solitary wave solution to equation (1) can be rewritten as

u(x, t) = 3β2

25αs
sech2

[
1

2

(
− β

5s
x +

6β3

125s2
t

)]
− 6β2

25αs
tanh

[
1

2

(
− β

5s
x +

6β3

125s2
t

)]
+

6β2

25αs
.

(18)

Similarly, in case b = − 6r2

25 , an exact solution to (1) is as follows:

u(x, t) = −12β2

25αs

[
e− β

5s ξ

e− β

5s ξ + c

]2

(19)

where ξ = x − vt and c is an arbitrary integration constant.
Note that b = − 6r2

25 in (13) implies v = − 6β2

25s . By setting c = 1 in (19), explicit travelling
solitary wave solutions to equation (1) can be rewritten as

u(x, t) = 3β2

25αs
sech2

[
1

2

(
− β

5s
x − 6β3

125s2
t

)]

− 6β2

25αs
tanh

[
1

2

(
− β

5s
x − 6β3

125s2
t

)]
− 6β2

25αs
. (20)

Equations (17) and (19) also confirm the qualitative analysis of equation (1) by Guan and
Gao in [17].

If assuming m = 3, 4 in (6), respectively, using similar arguments to those given earlier,
we obtain that (5) does not have any first-integral in the form (6). We do not need to discuss
the cases m � 5 due to the fact that, in general, the polynomial equation with degree greater
or equal to 5 is not solvable.

Now let us compare (17) and (19) with the solutions obtained in the previous literature.
Xiong et al used the analytic method and the method of undetermined coefficients to study the
Burgers–KdV equation

ut + uux − cuxx + βuxxx = 0. (21)
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With the assumption 6c2 = 25βv, an exact solution to equation (21) is presented in [20, 21]
as

u(ξ) = 2v − 3c2

25β

(
1 + tanh

cξ

10β

)2

. (22)

By using the equality Aet

1+et = A
2 tanh

(
t
2

)
+ A

2 , it is easy to see that (22) is in agreement with
(18) as α = 1, β = −c and s = β.

By means of a direct method and a series method, Jeffrey et al investigated the Burgers–
KdV equation in [22, 23]

ut + 2auux + 5buxx + cuxxx = 0

and found the solutions as follows provided that (2.9a, b) and (2.10a, b) hold on p 561 in [22]

u1 = 3b2

2ac

[
sech2

(
θ

2

)
+ 2 tanh

(
θ

2

)
+ 2

]
(23)

where θ = b
c
x − 6b3

c2 t + d , and

u2 = 3b2

2ac

[
sech2

(
θ

2

)
− 2 tanh

(
θ

2

)
− 2

]
(24)

where θ = − b
c
x − 6b3

c2 t + d . Since tanh(−x) = −tanh(x), it is easily seen that (23) and (24)
are identical with (18) and (20) respectively as α = 2a, β = 5b, and s = c, and the conditions
(2.9a, b) and (2.10a, b) agree with (13). By partial use of a Painlevé analysis, the same results
are presented by Halford and Vlieg-Hulstman in [24].

Taking s = −s, α = p and β = r in equation (1), Wang applied the homogeneous balance
method to equation (1) in [25]. The corresponding result ((3.18) when taking b = 0) in [25]
appears to coincide with (18) and (20). Note that there are three errors on p 286 in [25]: one
is that the first term in (3.16) should be − 6r3

125s2 , as a result of which the denominator 125s in
(3.18) should be replaced by 125s2. Parkes and Duffy also studied the Burgers–CKdV and
Burgers–KdV equations by the tanh-function method, but there are also some similar errors
on p 219 in [26].

3. Conclusion

The methods used in [20–24] are very useful for nonlinear evolution equations. The method
of solution of (1) used in [25] is complicated and not efficient. The method for (1) used in [26]
is only limited to the equations which have the travelling wave solution in the form of a power
of series in tanh-function. The first-integral method described herein is not only efficient but
also has the merit of being widely applicable. We can definitely apply this technique to many
nonlinear evolution equations, such as the nonlinear Schrödinger equation, the generalized
Klein–Gordon equation, and the higher order KdV-like equation, which can be converted to
the following form through the travelling wave transformation

u′′(ξ)− µu′(ξ)− R(u) = 0

where µ is real and R(u) is a polynomial with real coefficients. We believe that this method
must be advantageous for a rather diverse group of scientists.
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